
运维平台
运维管理平台，是用于维护AIRIOT平台的服务或者模板的板块，可进行版本升级等系列操作。

首页

进入运维管理平台，展示的首页为信息统计页面，会显示服务总数、模块总数，服务运行状态统计，服务更新

日志和模块更新日志

1. 一键在线升级：点击可进行全部服务和模块的在线升级，升级过程中只能顺序更新，升级时间较长，且升

级过程中不允许其他的服务、模块进行升级，驱动下载也无法进行

2. 一键离线升级：点击可进行服务和模块的离线升级，即在无网络的情况下进行升级。

服务管理模块主要用来添加服务和管理已添加的服务，可对服务进行升级和回退版本

已创建的服务可通过输入服务名称进行搜索，

1. 启动：启动全部服务；

2. 重启：重启全部服务；

3. 停止：全部服务停止运行；

4. 创建启动：创建并启动全部服务；

5. 离线上传中转服务协议：可在无网络的情况下上传数据中转协议；

6. 离线上传驱动：可在无网络的情况下上传驱动服务；

7. 编辑部署文件：直接编辑部署文件，通过编辑部署文件来控制所有服务，比如控制服务的运行状态；

8. 上传镜像：镜像即把一个程序运行所需要的配置和环境打成包进行上传；

9. 添加服务：点击添加新的服务；可在线添加直接安装服务即可，也可离线添加，直接上传服务即可，还可

输入相应信息进行离线服务的添加。

10. 开始、停止、重启、删除和批量升级：开始、停止、重启、删除和批量升级选中服务（==注：==不能删

除的服务和模块）；

11. 历史版本：历史版本记录的是该服务历史升级版本；

12. 离线升级：点击升级，上传升级服务，可在无网络的情况下进行升级；

13. 日志：服务运行输出的日志信息；

14. 图表：记录的是该服务器内存、cpu和网络使用情况，可设置刷新时间；

15. 检查：当前运行容器的详情信息；

16. 控制台：用来控制当前服务运行的状态；

17. 使用固定命令：选中后，点击文本框，命令直接显示，选择即可；

18. 用户：只能用root用户

模块管理把平台中的功能分模块管理，所有的模块都展示在模块管理平台中，可添加或更新新的模块 ；

当该模块中的功能新增、更新或修复bug时，可更新该模块版本。

资源统计

资源统计页面统计的是cpu、内存和磁盘的使用情况，超负荷时显示红色

服务诊断

出现错误的服务会在服务诊断页面显示

日志管理

日志管理包括操作日志、运维日志和服务管理日志

操作日志

操作日志记录的是运维平台的操作记录，可通过操作时间和操作类型查询操作日志

默认查询

默认查询当前天的操作日志，点击设置框可自定义默认查询时间，点击重置icon，查询全部的操作日志

清除日志

清除日志包括一键清除和周期清除

1. 一键清除指将操作日志进行一次性的清除操作

操作类型-清除数据：选择清除数据时，需定义时间范围，时间范围内的数据将被清除

操作类型-保留数据：选择保留数据时，需定义时间天数，设置时间内的数据将不会被清除，其余全部被清除

日志类型：选择类型的日志将会被清除，不选的情况下默认清除全部日志

2. 周期清除指将操作日志定期进行清除操作

清除周期：周期设置后，按照周期清除日志信息

清除时间：每个周期具体的执行时间，不定义默认周期的00:00:00执行

保留数据：设置后，定义时间内的数据将会被保留，其余数据将全部被清除

运维日志

记录系统、设备或软件在运行过程中产生的各种操作的信息集合

1. 显示时间戳：选中后，日志中显示时间戳

2. 时间：可通过时间查询设置时间内的运维日志

3. 行数：运维日志显示行数

4. 自动刷新：选中后，运维日志可自动刷新

可通过快捷搜索，搜索日志内容

服务管理日志

服务管理日志用来记录服务的安装、卸载和运行状态的记录

服务管理

1. 不能删除的服务和模块

服务名称 模块名称

web、traefik、spm、postgres、nmqtt、influx、etcd、core、auth、task、

front、redis、loki、promtail

@airiot/core、

@airiot/auth

2. 依赖版本

服务管理和模块管理在版本更新过程中，可能存在相互依赖的关系，如服务管理中core升级后，需依赖某一

服务或者模块，在会在core升级成功后，提示依赖的其他模块或者服务，须同步升级。

可到表格中【依赖最低版本】字段下升级依赖的模块，也可到对应的服务管理或者模块管理进行升级。

有效解决多服务、模块未同步更新导致功能无法正常使用的问题。

空间管理
空间可以实现灵活的多项目管理，实行租户管理，每个租户可以创建自己的项目。空间的功能分为两个管理模

块，一个客户空间管理（客户即整个管理平台的超级管理员，只有一个账号），一个租户空间管理，客户可以

创建多个租户。

通过空间的功能，实现用户创建多项目，单用户下有多租户创建多项目，每一个项目之前数据、权限、内容等

彼此保密独。

空间管理包括项目管理、租户管理、授权管理、系统设置和个人设置。

https://docs.airiot.link/project-management/%E9%A1%B9%E7%9B%AE%E7%AE%A1%E7%90%86
https://docs.airiot.link/project-management/%E7%A7%9F%E6%88%B7%E7%AE%A1%E7%90%86
https://docs.airiot.link/project-management/%E6%8E%88%E6%9D%83%E7%AE%A1%E7%90%86
https://docs.airiot.link/project-management/%E7%B3%BB%E7%BB%9F%E8%AE%BE%E7%BD%AE

项目管理
项目管理中，已添加的项目在项目界面以列表形式或卡片形式进行展示。

已添加的项目可通过项目名称直接搜索，也可点击更多过滤按钮，通过设置过滤条件进行精确搜索，过滤字段

包括项目状态、项目范围和扩展字段中选中过滤查询中显示的字段

通过过滤器搜索到结果后，项目的左上方会提示当前所选择的过滤条件，在其最右边有个清除按钮可以清空过

滤条件。

当使用搜索条件搜索时，会显示搜索的高亮标识，用户能够知道当前列表是经过搜索后的结果

添加项目

点击“添加项目”按钮，填写项目信息，添加项目，填写完信息后点击保存按钮，返回项目管理界面。

项目ID:项目ID仅支持小写字母、数字，不可为纯数字、default，必须以字母开头。不填时，保存时将自动生

成。 项目ID会在中台访问时作为浏览器路径的组成部分。

项目名称：自定义填写项目名称；

项目行业：点击选择项目行业，选项为系统内置行业；

所属租户:点击选择所属租户，创建项目时可将项目分配给所属租户进行管理，同一个项目只能属于一个租

户，选择所属租户时支持模糊搜索；

授权：设置项目可用的授权信息，包括基础授权、数据采集与控制引擎授权、数据分析引擎授权、可视化引擎

授权、业务流引擎授权、二次开发引擎授权和高级授权；

项目信息中的必填项需全部填写，其中基础授权信息的必填项包括：授权时长、起始时间、用户数量、数据表

数量，左侧是客户可用的授权信息，右侧是需要填入的项目授权信息，填入的数值不能超过左侧数值；

基础授权
时长：项目的有效时长；

起始时间：项目的有效起始时间，项目有效时才可以登录平台；

用户数：项目可添加的用户数量；

数据表数量：该项目中可创建的数据表数量；

设备记录数量：该项目中可创建的设备数量，不填写时默认不限制；

数据采集与控制引擎授权
数据点-点数：项目可创建的数据点数量；

数据分析引擎授权
BI（数据集+数据视图）：项目是否用BI功能；

可视化引擎授权
画面：项目可创建画面的数量；

GIS组件：项目是否可使用GIS组件；

三维组件：项目是否可使用三维组件；

ISC视频组件：项目是否可使用ISC视频组件；

海康无插件视频：项目是否可用海康无插件视频；

画面回放（画面事件画面回放动作）：项目是否可使用画面回放功能；

手机前台打包app：项目是否可用手机前台打包app；

业务流引擎授权
流程数量：项目可创建流程的数量； 通知：项目中是否可使用发送微信、发送企业微信、发送钉钉和发

送短信功能

网关：项目中是否可使用mqtt网关、opcua网关、opcda网关和db网关功能

执行脚本：项目中是否可使用执行脚本功能

二次开发引擎 二次开发：项目中是否可使用OauthApp和扩展应用功能

高级授权 数据接口：项目中是否可使用数据接口功能；

AI：项目中是否可以使用AI功能；

视频管理：项目中是否可以使用视频管理模块，视频管理模块可对平台中接入国标GB2818协议的摄像头

设备进行统一管理，可实现视频的监控，设备使用情况分析等功能；

系统设置-催款模块功能：项目中是否可以使用催款模块，催款模块用来提醒非admin用户授权到期提醒

配置；

kafka服务：项目中是否使用kafka服务功能；通过kafka服务，实现将项目A（生产者）实时数据发布到

kafka的topic中，项目B(消费者)可通过订阅kafka服务中的topic获得生产者的实时数据。

中转服务：项目中是否可以使用中转服务功能

是否免密登录：选中后登录项目时无需输入密码可直接登录；

描述：描述项目信息；

背景色：用于设定项目管理卡片展示时，卡片的背景色，如图：

域名：域名不可重复，填写后并开启【使用域名访问】时，访问项目后台和前台可通过域名访问项目；注意域

名须为备案后的域名。

使用域名访问： 选中后进入前后台时，访问地址为域名地址

支持https格式： 选中后需上传https格式证书，上传后访问地址为https格式

端口： 每个项目可以定义自己的端口号，目前端口号限制在5001-65535范围内，其他不可用

媒体库公共资源：公共资源文件夹用于存储空间项目的资源共享。启用后，项目媒体库中将创建公共资源文件

夹，所有启用的项目均可查看和使用其中的文件，该文件夹不可删除和修改移动等。

公共资源权限设置：启用媒体库公共资源后，可进行公共资源权限的设置。

创建子文件夹：选中后，项目用户可在公共资源中创建子文件夹。

上传文件：选中后，项目用户可在公共资源中上传文件。

修改子文件夹、文件：选中后，项目用户可修改公共资源下的子文件、文件。

删除子文件夹、文件：选中后，项目用户可删除公共资源下的子文件、文件。

批量删除

删除一个或多个项目，被删除的项目不能恢复。点击批量删除按钮，选中要删除的项目或点击全选开关选中所

有项目，点击批量删除按钮即可，未选中项目前，批量按钮置灰。

查看后台

点击进入后台按钮，进入后台查看。

新创建的项目需初始化管理员密码；

密码配置完毕后，进入下一步骤系统配置；

配置完毕后，登录项目，输入用户名和密码

登录后进入系统后台设置界面，如图：

查看前台

点击前台图标可进入前台界面查看，前台系统展示内容可在后台中设置：

项目操作

卡片展示

项目创建完毕后，支持修改项目，禁用形目，项目备份，和删除项目；

修改项目：修改项目的信息；

禁用项目：项目禁用后则该项目无法登录，数据不会丢失，被禁用的项目还可重启；

备份项目：点击备份项目数据，选择备份内容，点击备份即可,备份的文件存储在项目中台的通用功能>备份管

理菜单下

1. 文件名称：文件名称自动生成，也可自定义。文件名称不可重复。

2. 备份内容：备份内容有媒体文件、前端文件和基础数据。

设备免备份文件：设置媒体库备份免备份文件，选中的文件为免备份文件，不会进行备份。

基础数据：基础数据选中时，显示具体数据内容，选中的数据才会进行备份

上传备份：通过该入口上传项目备份文件，上传后该备份文件显示在项目【备份与还原】列表中，可进行还原

还原项目：还原项目中的备份文件。点击还原项目，弹出备份列表弹窗，选中项目中已存在的备份文件还原即

可

数据库备份项目： 对项目数据进行数据库备份，选择备份内容，点击备份即可

数据库上传备份： 通过该入口上传数据库备份文件，上传后显示在【数据库备份】列表中，可进行还原

数据库还原项目： 还原项目的数据库备份文件。点击数据库还原项目弹出数据库还原项目弹窗，选择列表中

已存在的备份文件还原即可

删除项目：数据会被永久删除，无法恢复。

列表展示

空间项目除了卡片形式展示外，还可以以列表形式展示，操作同卡片展示中的操作

租户管理
管理平台中的租户，已添加的租户可通过租户名称、租户类型、租户行业和租户状态进行搜索。

项目：查看租户空间所创建的项目；

详情：查看租户详情；

禁用：禁用后租户无法登录，但租户的数据不会丢失，禁用后的租户还可重启；

修改：修改租户信息；

删除：删除租户；

添加租户

点击“添加租户”按钮，填写租户信息，添加租户，填写完信息后点击保存按钮，返回租户管理界面。

租户类型：租户类型选择个人或企业；

租户名称：自定义租户名称，登录系统时输入租户名称和租户密码，便可进入该租户空间；

租户密码：自定义租户密码；

租户行业：点击选择租户行业；

租户项目权限：租户项目权限包括不限制、允许选择我创建的模板、允许选择市场中的模板和允许创建空白项

目；

授权：详见 项目管理授权；

描述：描述租户信息；

租户空间

https://docs.airiot.link/project-management/%E9%A1%B9%E7%9B%AE%E7%AE%A1%E7%90%86

登录租户名称和租户密码，进入租户空间，首页记录了该租户空间的基本信息，如项目信息和授权信息。

点击我的项目，进入项目管理界面，项目管理界面点击添加项目按钮可添加项目，添加方式同项目管理中项目

添加方式。

TIP

注意：这里项目授权必须在租户可用授权范围之内。

授权管理
展示空间项目可用功能，以及升级授权

升级授权

第一步：复制当前空间机器码；

第二步：请将机器码及升级内容告知给相关销售人员，由销售人员将升级授权文件发送给您；可通过填写表单

或添加客服微信联系到销售人员

第三步：将我们提供的升级授权文件上传，即可完成升级授权。

系统设置

基础设置

系统设置包括系统名称设置、系统版权信息设置、系统图片设置和系统背景。

系统名称：设置空间系统名称；

系统语言：：平台展示语言设置，默认为简体中文

系统图片：上传空间的logo图片；

系统背景：登录系统的背景图片；

项目图片：上传该空间中建立的项目中的logo， 配置后该空间的每一个项目初始化之后都默认使用此logo；

项目背景：空间中所建立的项目的登录背景，配置后该空间的每一个项目初始化之后都默认使用此背景；

错误次数：默认不限制，定义次数后，输错限制次数，账号将被冻结，默认冻结1分钟；

冻结时长：默认1分钟，用户可定义输错限制次数后的冻结时长；

项目扩展

设置项目信息的扩展字段，当项目表单中的字段信息不满足需求时，可通过项目扩展中新增字段信息，新增的

字段信息将在项目表单中展示。 如下图，添加项目管理员字段信息，方便知道该项目由谁负责管理

另外，可以在字段的权限中勾选过滤查询中显示，则其会在项目搜索处的更多过滤中作为可选的过滤条件，如

下图所示：

控件：包括基础控件、高级控件，鼠标点击控件拖入到编辑区域，添加控件；

属性配置：设置控件的属性；

保存：点击保存后，扩展的字段将同步到项目管理中的新增项目表单和修改项目的表单中；

预览：预览控件的效果；

安装问题

安装过程钟卡住

情况1：pm2安装或运行失败

打开任务管理器->服务查看pm2.exe服务的状态，若状态为已停止，右键点击启动后观察是否可以正常运

行。若pm2.exe服务不存在或者不能正常运行，请联系开发人员。

情况2：etcd初始化失败

1.打开任务管理器，详细信息，查看etcd.exe进程的PID

2.打开命令行，输入'netstat -ano | findstr etcd进程的PID'，查看etcd进程监听的端口

3.文件资源管理器进入安装目录\lib\base\etcd-c3.5.9

4.打开etcd.conf文件查看listen-client-urls端口是否与第2步etcd所监听的端口一致，若不一致，则

1）任务管理器右键点击etcd.exe，结束进程

2）打开命令行，进入安装目录\lib\base\etcd-c3.5.9

3）输入etcd.exe --config.file=etcd.conf

5.若不成功，则联系开发人员

情况3：运维服务AIR-OPERATION安装或启动失败

AIR-OPERATION服务安装失败

1.以管理员身份运行cmd 2.输入

注：将安装目录替换为实际安装平台的目录

AIR-OPERATION无法启动

查看运维服务的日志 位置在安装目录\lib\operation\log\operation.log 1）日志中出现

SC CREATE AIR-OPERATION binpath= ""安装目录\lib\operation\operation.exe" -runEnv pm2 -c
"./configs/config.toml"" start= auto

SC START AIR-OPERATION

加载 programs.yml 文件失败, yaml: unmarshal errors

需要检测安装目录\lib\operation\programs.yml文件的格式是否正常 2）日志中出现

需要检测安装目录\lib\operation\configs\config.toml文件的格式及编码是否正常

panic: Fatal error config file: While parsing config: toml: invalid character in comment

卸载问题

平台卸载完成后安装目录仍有airiot、lib文件文件夹

原因

pm2进程管理程序关闭进程只有3秒的延时，之后便不在处理该进程，若电脑性能不足，可能会有未被关闭的

进程残留，导致文件无法删除。

方案1

重启电脑即可手动删除

方案2

打开任务管理器手动结束进程

操作步骤如下:

1.鼠标移动到任务栏点击右键，选择任务管理器

2.打开详细信息，鼠标移动到标头右键选择列，添加命令行

3.按照命令行排序，找到AIRIOT平台相关服务，如下图，右键结束进程

端口占用
查看服务日志

打开运维页面http://127.0.0.1:13030

查看异常状态的服务日志(鼠标放在异常服务最右侧 ...处，然后点击日志按钮)

接口服务端口被占用

日志中包含上面信息的为服务端口被占用

例如core服务端口被占用:

bind: Only one usage of each socket address (protocol/network address/port) is normally
permitted.

http://127.0.0.1:13030/

中间件端口被占用

1.web服务

2.etcd服务

3.influx服务

解决方法

1.关闭占用端口的进程

1）键入'win'+'r'，输入cmd，回车，打开命令行

2）查看占用服务端口的进程PID

3）关闭进程

2.修改平台服务的端口

注：若占用平台服务端口的进程正在使用，不可关闭，则需要修改平台服务的端口

修改接口服务的端口

以core服务为例

1）修改接口服务配置文件，位置在 安装目录\lib\service\core\configs\config.toml

2）core服务占用了两个端口，分别为GRPC端口9223，httpserver端口59015，按照实际情况修改即可

netstat -ano | findstr 被占用的端口号

kill -9 步骤2查到的PID

3）在运维页面重启core服务

修改etcd服务的端口

几乎所有的接口服务都依赖etcd服务，所以如果etcd端口被占用，建议将数据备份然后将平台卸载重装。

操作步骤：

注：如果平台是刚刚安装或者不需要备份，可以跳过第2、7步

1）打开文件资源管理器，进入安装目录；

2）复制airiot文件夹到其他目录；

3）在安装目录下双击uninst.exe卸载平台；

4）双击安装包重新安装平台；

5）管理员身份打开命令行，输入'pm2 kill'；

6）打开任务管理器，找到air-redis、AIR-PGSQL两个服务，右键停止；

7）将备份的airiot文件夹还原到安装目录，直接覆盖即可；

8）打开任务管理器，分别启动air-redis、AIR-PGSQL、AIR-OPERATION三个服务。

修改influx服务的端口

1.打开influx配置文件(安装目录/lib/base/influx-1.8.3-1/influx.conf)，如图:

2.修改8086端口为其他空闲端口，并保存配置文件

3.浏览器打开http://127.0.0.1:58080, 点击etcdkeeper，输入密码(咨询客服)

http://127.0.0.1:58080/

4.点击左侧airiot/config/pro.json项，修改influx的配置，如图，将8086修改为第2步相同的空闲端口：

5.打开运维的programs.yml文件(安装目录/lib/operation/programs.yml)，修改influx服务的端口为第2步

相同的空闲端口

6.重启AIR-OPERATION服务

7.管理员身份打开cmd，输入pm2 kill

8.打开任务管理器，选择服务，重启AIR-OPERATION服务

修改mqtt服务的端口

1.打开mqtt配置文件(安装目录/lib/base/mosquitto/mosquitto.conf)，如图:

2.修改1883端口为其他空闲端口，并保存配置文件

3.浏览器打开http://127.0.0.1:58080, 点击etcdkeeper，输入密码(咨询客服)

http://127.0.0.1:58080/

4.点击左侧airiot/config/pro.json项，修改mqtt的配置，如图，将1883修改为第2步相同的空闲端口：

5.打开运维的programs.yml文件(安装目录/lib/operation/programs.yml)，修改mqtt服务的端口为第2步相

同的空闲端口

6.重启AIR-OPERATION服务

7.管理员身份打开cmd，输入pm2 kill

8.打开任务管理器，选择服务，重启AIR-OPERATION服务

修改pgsql服务的端口

1.打开pgsql配置文件(安装目录/lib/airiot/db/postgres/pgdata/postgres.conf)，如图:

2.修改5432端口为其他空闲端口，并保存配置文件

3.浏览器打开http://127.0.0.1:58080, 点击etcdkeeper，输入密码(咨询客服)

http://127.0.0.1:58080/

4.点击左侧airiot/config/pro.json项，修改pgsql的配置，如图，将5432修改为第2步相同的空闲端口：

5.打开任务管理器，选择服务，重启AIR-PGSQL服务

6.管理员身份打开cmd，输入pm2 kill

7.打开任务管理器，选择服务，重启AIR-OPERATION服务

修改redis服务的端口

1.管理员身份打开cmd，停止并删除air-redis服务

2.创建新的服务，启动指令修改redis端口6379为空闲端口

3.浏览器打开http://127.0.0.1:58080, 点击etcdkeeper，输入密码(咨询客服)

SC STOP air-redis

SC DELETE air-redis

将安装目录替换为平台的安装目录，例如安装在D:/AIRIOT,则将‘安装目录’替换为D:/AIRIOT
将新的空闲端口替换
将${NEW_PASSWORD}替换为redis的实际密码，在安装目录下install.bat脚本中可以查到
"安装目录\lib\base\redis-latest\redis-server" --service-install --service-name AIR-REDIS --
loglevel verbose --logfile "安装目录\airiot\db\redisdb\redis.log" --bind 127.0.0.1 --port 新的
空闲端口 --requirepass ${NEW_PASSWORD} --appendonly yes

SC DESCRIPTION AIR-REDIS AIRIOT平台Redis数据库

SC START AIR-REDIS

http://127.0.0.1:58080/

4.点击左侧airiot/config/pro.json项，修改redis的配置，如图，将2379修改为第2步相同的空闲端口：

5.管理员身份打开cmd，输入pm2 kill

6.打开任务管理器，选择服务，重启AIR-OPERATION服务

修改traefik服务的端口

traefik监听了两个端口，分别为31000和38080

1.打开traefik配置文件(安装目录/lib/base/traefik/traefik.yml)，如图:

2.修改被占用的端口为其他空闲端口，并保存配置文件

3.打开运维的programs.yml文件(安装目录/lib/operation/programs.yml)，修改traefik服务的端口为第2步

相同的空闲端口

4.重启AIR-OPERATION服务

5.运维页面重启traefik服务

修改web服务的端口

1.打开web配置文件(安装目录/lib/base/nginx-1.18.0/conf/nginx.conf)，如图:

2.修改被占用的端口为其他空闲端口，并保存配置文件

3.打开运维的programs.yml文件(安装目录/lib/operation/programs.yml)，修改web服务的端口为第2步相

同的空闲端口

4.重启AIR-OPERATION服务

5.运维页面重启web服务

修改loki服务的端口

loki服务监听两个端口，分别为3100,9095

注：若被占用的端口为9095，可以跳过第6、7、8步 1.打开loki配置文件(安装目录/lib/base/loki/local-

config.yaml)，如图:

2.修改被占用的端口为其他空闲端口，并保存配置文件

3.打开运维的programs.yml文件(安装目录/lib/operation/programs.yml)，修改loki服务的端口为第2步相

同的空闲端口

4.重启AIR-OPERATION服务

5.运维页面重启loki服务

6.修改promtail配置文件(安装目录/lib/base/promtail/promtail-config.yaml)中的loki端口

7.修改flow-engine配置文件(安装目录/lib/service/flow-engine/configs/config.yaml)中的loki端口

8.运维页面重启flow-enigne,promtail服务

修改syslogloki服务的端口

syslogloki服务监听两个端口，分别为3101,49095

注：若被占用的端口为49095，可以跳过第6、7、8步 1.打开loki配置文件(安装目

录/lib/base/syslogloki/local-config.yaml)，如图:

2.修改被占用的端口为其他空闲端口，并保存配置文件

3.打开运维的programs.yml文件(安装目录/lib/operation/programs.yml)，修改syslogloki服务的端口为第

2步相同的空闲端口

4.重启AIR-OPERATION服务

5.运维页面重启syslogloki服务

6.修改syslogpromtail配置文件(安装目录/lib/base/syslogpromtail/promtail-config.yaml)中的syslogloki

端口

7.修改syslog配置文件(安装目录/lib/service/syslog/configs/config.yaml)中的syslogloki端口

8.运维页面重启syslog,syslogpromtail服务

修改promtail服务的端口

1.打开promtail配置文件(安装目录/lib/base/promtail/promtail-config.yaml)，如图:

2.修改被占用的端口为其他空闲端口，并保存配置文件

3.打开运维的programs.yml文件(安装目录/lib/operation/programs.yml)，修改promtail服务的端口为第2

步相同的空闲端口

4.重启AIR-OPERATION服务

5.运维页面重启promtail服务

修改syslogpromtail服务的端口

1.打开syslogpromtail配置文件(安装目录/lib/base/syslogpromtail/promtail-config.yaml)，如图:

2.修改被占用的端口为其他空闲端口，并保存配置文件

3.打开运维的programs.yml文件(安装目录/lib/operation/programs.yml)，修改syslogpromtail服务的端口

为第2步相同的空闲端口

4.重启AIR-OPERATION服务

5.运维页面重启syslogpromtail服务

平台无法访问

问题描述

在离线的Windows服务器上平台运行一段时间后突然无法访问，只有重启电脑可以解决

思路

大致是因为电脑tcp连接数过多

解决办法

排查tcp连接数

1.'win+R'打开运行，输入'perfmon.msc'，回车

2.点击'性能监视器'

3.点击上方‘+’号，添加TCPv4

4.查看‘Connections Active’的数量，超过50万基本确定思路正确。

排查占用tcp连接数多的进程

1.打开命令行

2.输入'netstat -noqt'，查看占用连接数最多的进程PID；也可以打开powershell并输入以下指令排查：

3.若该进程与平台无关且客户允许关闭，则关闭该进程

4.查看平台是否可以正常访问

Get-NetTCPConnection | Group-Object -Property State, OwningProcess | Select -Property Count,
Name, @{Name="ProcessName";Expression={(Get-Process -PID ($_.Name.Split(',')[-1].Trim('
'))).Name}}, Group | Sort Count -Descending

平台迁移

Windows系统(非pm2)

例如：从C:\AIRIOT 迁移至 D:\AIRIOT,下文中的路径按照实际情况来执行

1.停止平台

以管理员身份打开cmd sc stop AIRIOT

sc delete AIRIOT

2.迁移平台

将C盘下的AIRIOT文件复制到D盘

3.创建服务

打开cmd 进入D:\AIRIOT\nssm-2.24\win64 nssm.exe install

弹出NSSM service installer窗口 输入内容如

上图所示，点击‘Install service’

4.启动平台

以管理员身份打开cmd sc start AIRIOT

Windows系统(pm2版本)

例如：从C:\AIRIOT 迁移至 D:\AIRIOT,下文中的路径按照实际情况来执行

1.停止平台

打开任务管理器->服务，分别停止AIR-PGSQL、air-redis、AIR-OPERATION、pm2.exe

2.将平台迁移到指定位置

复制C:\AIRIOT文件夹到D盘

3.修改新目录中文件的绝对路径

1）进入D:\AIRIOT\airiot\loki

修改local-config.yaml文件中的路径，将C:\AIRIOT替换为D:\AIRIOT

2）进入D:\AIRIOT\airiot\syslogloki

修改local-config.yaml文件中的路径，将C:\AIRIOT替换为D:\AIRIOT

4.删除pm2文件

1）进入C:\ProgramData目录，如果未找到该目录，再文件查看中选择查看隐藏的文件，如下图

2）删除pm2文件夹

5.重新创建服务

管理员模式打开cmd，执行

sc delete AIR-OPERATION
sc delete AIR-PGSQL
sc delete air-redis
sc delete pm2.exe

// 进入新的安装目录
cd D:\AIRIOT

// 执行安装脚本
install.bat

// 启动air-operation服务
sc start air-operation

运维忘记密码

Windows系统

停止平台

删除运维数据文件

进入安装目录下/lib/operation/data 删除data目录下的文件

启动平台

安装和授权部分
1. Windows下的平台安装后，运维平台中的etcd-set服务处于启动失败

问题描述：

第一次注册和登录运维平台后，查看服务管理：运维平台中的etcd-set服务处于启动失败的状态。

解决方案：

etcd-set服务为初始化服务，安装时只启动一次，安装成功后该服务的使命结束，可以将其删除掉。

2. Windows单机版平台-运维平台中服务全部启动，但是中台进不去

问题描述

运维平台中服务全部启动，但是中台进不去。

解决方案

datascore服务升级失败，删除安装失败的datascore服务后，重新安装该服务，问题解决。

3. Windows单机版平台-授权文件上传后，授权内容显示不全

问题描述

授权文件上传后，显示不全。

解决方案

授权文件不必解压，直接上传压缩包，问题解决。

4. 空间版服务的i18n的服务一直处于重启状态

问题描述

空间版服务的i18n的服务一直处于重启状态，日志没有打印信息，如图所示：

解决方案

该服务是国际化的服务，这个服务只运行一次即可，平台安装成功后，可以将其删除。

5. Windows单机版平台-数据分析功能-高级配置显示问题

问题描述

4.0平台-windows单机版：数据分析显示如图所示：

解决方案

在运维平台中添加，@airiot/gg-project模块，如图所示，问题得以解决。

6. Windows单机版平台-用户管理-显示问题

问题描述

单机版平台安装后，打开用户管理功能，显示如图：

解决方案

在运维平台中添加，@airiot/components模块，如图所示，问题解决。

使用AIRIOT平台过程中要注意的内容
1.建议使用的浏览器：谷歌和火狐

2.禁用Windows Update

按Win+R输入services.msc并按Enter键打开服务页面，操作如图1-1所示：

在右侧列表中找到“Windows Update”选项，将该服务停止，然后双击进入详细属性页面，将其启动类型配置

为“禁用”，然后单击“应用”>“确定”即可关闭Windows自动更新，操作页面如图1-2和1-3所示：

启用HTTPS访问
如果想要给平台添加 https 的访问方式, 可以按以下步骤操作:

1.准备证书

可以使用自签名的证书或向相关机构申请安全证书.

证书包含以下 2 个文件:

<文件>.key

<文件>.pem

使用自签名的证书时, 浏览器会有不安全访问的相关提示.

2. 修改平台配置

1. 上传证书

将 步骤1 中得到的文件上传到平台服务器上.

可以将证书文件放置在 平台安装根目录/lib/base/nginx-1.18.0/cert 目录下. 例如:

D:/AIRIOT/lib/base/nginx-1.18.0/cert

2. 修改配置

修改 web 服务的 nginx.conf 配置文件. 该文件的路径通常为 平台安装根目录/lib/base/nginx-

1.18.0/conf/nginx.conf . 使用文本编辑工具打开该文件, 按照以下步骤进行操作:

1. 将现有端口修改为https

如果要将现有端口修改为 https 的访问方式, 需要修改 nginx.conf 中的 3030 端口对应的 Server 内容, 添

加 ssl 相关配置.

注: 需要注意标有注释的内容.

server {
 # 将端口号改为 443 并启用 ssl

2. 添加新端口为https

如果想同时允许 http 和 https 两种访问方式时, 需要额外添加一套平台配置. 步骤如下:

将 3030 端口的 Server 配置复制一份

按前面的 步骤 修改新复制的 Server .

 listen 443 ssl;
 # 访问域名，多个域名以空格分开
 server_name localhost;

 # 证书相关配置, 具体路径为实际证书存放路径
 ssl_certificate_key 平台安装根目录/lib/base/nginx-1.18.0/cert/<文件名>.key;
 ssl_certificate 平台安装根目录/lib/base/nginx-1.18.0/cert/<文件名>.pem;

 # ssl验证相关配置
 ssl_session_timeout 5m; #缓存有效期
 ssl_ciphers ECDHE-RSA-AES128-GCM-
SHA256:ECDHE:ECDH:AES:HIGH:!NULL:!aNULL:!MD5:!ADH:!RC4; #加密算法
 ssl_protocols TLSv1 TLSv1.1 TLSv1.2; #安全链接可选的加密协议
 ssl_prefer_server_ciphers on; #使用服务器端的首选算法

 # 其余配置保持不变即可
}

原有的配置
server {
 listen 3030;
 server_name localhost;
 keepalive_timeout 180;
 client_header_timeout 180;
 send_timeout 180;
 client_body_timeout 180;
 client_max_body_size 300000M;
 proxy_connect_timeout 3600s;
 proxy_send_timeout 3600s;
 proxy_read_timeout 3600s;
 client_header_buffer_size 512k;
 large_client_header_buffers 4 512k;
 charset utf-8;

 # 其它内容
}

新复制并修改后的配置
server {
 # 将端口号改为 443 并启用 ssl

3. 重启相关服务

登录 运维管理系统 , 访问地址通常为 http://ip:13030 , 点击 服务管理 菜单, 找到 web 服务, 勾选后点击重启.

重启后, 查看 web 服务的运行状态, 如果为 运行 , 则表示修改成功, 否则表示修改失败. 此时点击 web 服务的

更多 菜单中的日志查看日志, 并根据日志中的错误信息做相应的调整, 调整后再次启动 web .

修改成功后即可通过 https 协议访问平台.

 listen 443 ssl;
 # 访问域名，多个域名以空格分开
 server_name localhost;

 # 证书相关配置, 具体路径为实际证书存放路径
 ssl_certificate_key 平台安装根目录/lib/base/nginx-1.18.0/cert/<文件名>.key;
 ssl_certificate 平台安装根目录/lib/base/nginx-1.18.0/cert/<文件名>.pem;

 # ssl验证相关配置
 ssl_session_timeout 5m; #缓存有效期
 ssl_ciphers ECDHE-RSA-AES128-GCM-
SHA256:ECDHE:ECDH:AES:HIGH:!NULL:!aNULL:!MD5:!ADH:!RC4; #加密算法
 ssl_protocols TLSv1 TLSv1.1 TLSv1.2; #安全链接可选的加密协议
 ssl_prefer_server_ciphers on; #使用服务器端的首选算法

 # 其余配置保持不变即可
}

loki服务报错

问题描述

报错详情：

原因：

Windows电脑有多个网卡，而loki服务未指定当前网卡，默认使用了一个未生效的网卡

解决办法：

在安装目录（默认C:/AIRIOT）/loki下修改配置文件local-config.yaml，如下图：

error contacting scheduler

平台迁移

linux系统

例如: 将/opt/app迁移至/home/app

1.停止平台

进入平台安装路径 例如/opt/app

2.平台迁移

3.修改docker-compose.yml

将docker-compose.yml和docker-compose-operation.yml中的/opt/app替换为/home/app

4.启动平台

cd /opt/app
./uninstall.sh

cd /home
mv /opt/app .

./runOperation.sh

./run.sh

运维管理忘记密码

linux系统

删除运维数据文件

进入安装目录下operation/data 删除data目录下的文件

重启operation容器

docker restart operation

docker路径迁移
前提：迁移docker一般情况是/root所在磁盘空间不足，因为docker的默认文件位置在/var/lib/docker，和

root在一个磁盘，所以要对docker进行迁移

停止docker

迁移docker文件路径

注：假设从/var/lib/docker迁移至/home/docker，/home所在磁盘为一个比较大的磁盘

启动docker

平台正常启动之后，删除docker-old

INFO

注： 若遇到mqtt，mongo启动报错permission denied，解决办法：

1. 停止容器

systemctl stop docker

cd /var/lib
cp -r docker /home/docker // 将docker文件迁移至/home
mv docker docker-old // 备份docker文件
ln -s /home/docker /var/lib/docker // 创建链接,/var/lib/docker指向新的docker路径/home/docker

systemctl start docker

cd /var/lib
rm -rf docker-old

2. 删除容器

3. 删除镜像

4. 重新导入镜像

5.启动平台

docker stop mongo mongo-set mqtt

docker rm mongo mongo-set mqtt

docker rmi mongo:4.2.12
docker rmi airiot/rabbitmq:3.8.3-management-alpine

// 假设平台安装在/home/app,则镜像的位置在/home/app/lib/base
cd /home/app/lib/base
docker load < mongo.tar.gz
docker < load < rabbitmq.tar.gz

docker-compose up -d

linux安装docker后无法访问宿主机端口
问题描述： CentOS 8 系统。Docker安装后，Docker内容器，在防火墙关闭状态、防火墙端口规则开放状态

依然无法访问主机端口。 可以ping通宿主机IP，但是curl提示unreachable

解决方法：

1. 开启IP地址转发 默认情况下 firewalld会禁止转发流量，可以执行 firewall-cmd --query-masquerade

查看状态，应该是no，请执行下面的命令永久开启转发。

2. 重启防火墙

3. 重启docker

firewall-cmd --add-masquerade --permanent

firewall-cmd --reload

systemctl restart docker

docker网段冲突

INFO

错误信息： ERROR: could not find an available, non-overlapping IPv4 address pool among the

defaults to assign to the network

解决方案

修改docker网卡默认网段

docker网卡默认网段一般为172.17.0.1/16

添加网段配置 {"bip": "172.20.0.1/16"}

指定容器网桥

修改docker-compose.yml文件及docker-compose-operation.yml文件中的网桥配置 如：

cd /etc/docker
vi daemon.json

systemctl daemon-reload
systemctl restart docker

web:
 container_name: web
 image: nginx:1.21.6-alpine
 logging:
 driver: json-file
 options:
 max-size: 100m
 max-file: "1"
 networks:
 - backend
 ports:
 - 3030:80
 restart: always
 ulimits:

 nproc: 4096
 nofile:
 soft: 1024
 hard: 3072
 volumes:
 - /etc/localtime:/etc/localtime:ro
 - /opt/dev/airiot/web/html:/usr/share/nginx/html
 - /opt/dev/airiot/web/portal:/usr/share/nginx/portal
 - /opt/dev/airiot/web/nginx.conf:/etc/nginx/nginx.conf

networks:
 backend:
 ipam:
 config:
 - subnet: "10.11.0.0/24"

version: '3'

services:
 operation:
 container_name: operation
 image: airiot/operation:latest
 restart: always
 environment:
 - PROJECTNAME=dev
 - "CORS.ENABLE=true"
 - INTERNETACCESS=false
 networks:
 - backend
 ports:
 - "13031:10088"
 volumes:
 - /etc/localtime:/etc/localtime:ro
 - /var/run/docker.sock:/var/run/docker.sock:ro
 - /opt/dev/:/app/compose/
 - /opt/dev/airiot/web/html:/app/html
 - /opt/dev/operation/data:/data
 - /opt/dev/operation/log:/log
 - /opt/dev/operation/configs:/app/configs
 - /opt/dev/operation/build:/app/web
 - /opt/dev/operation/driverRepo:/driverRepo
 ulimits:
 nproc: 4096
 nofile:
 soft: 1024
 hard: 3072
 logging:
 driver: "json-file"
 options:

启动平台

 max-size: 100m
 max-file: "1"

networks:
 backend:
 ipam:
 config:
 - subnet: 10.10.0.0/24

./runOperation.sh

./run.sh

Rocky Linux 系统安装平台后，服务一直重启
问题描述： 在 Rocky Linux 系统安装平台后，服务报错，运维页面打不开

原因： 容器操作文件无权限

解决方法：

1. 添加安全策略配置 在docker-compose.yml文件中，服务节点下添加SELinux配置"security_opt"，并指

定"label=disable"

2. 重启平台

version: '3'
services:
 myapp:
 image: myapp-image
 security_opt:
 - label=disable

docker-compose up -d

too many open files

描述

http: Accept error: accept tcp [::]:9000: accept: too many open files; retrying in 1s

解决

修改docker-compose.yml文件unlimit字段的soft值，改大一点

临时修改 fs.inotify.max_user_instances

若要用就修改，需要添加到系统配置中

sysctl -w fs.inotify.max_user_instances=1024

vi /etc/sysctl.conf

fs.inotify.max_user_instances=1024

Influx查询数据
1. 进入容器

2. 连接influx

3. 连接tsdb数据库

4. 查询数据

docker exec -it influx sh

influx -username admin -password 密码

use tsdb

select 数据点标识,id from "项目id_模型id" order by time limit 10

启用HTTPS访问
如果想要给平台添加 https 的访问方式, 可以按以下步骤操作:

1.准备证书

可以使用自签名的证书或向相关机构申请安全证书.

证书包含以下 2 个文件:

<文件>.key

<文件>.pem

使用自签名的证书时, 浏览器会有不安全访问的相关提示.

2. 修改平台配置

1. 上传证书

将 步骤1 中得到的文件上传到平台服务器上.

可以将证书文件放置在 /平台安装根目录/airiot/web/ssl 目录下

2. 修改配置

修改 web 服务的 nginx.conf 配置文件. 该文件的路径通常为 /平台安装根目录/airiot/web/nginx.conf . 使用

vim 或其它编辑工具打开该文件, 按照以下步骤进行操作:

1. 将现有端口修改为https

如果要将现有端口修改为 https 的访问方式, 需要修改 nginx.conf 中的 80 端口对应的 Server 内容, 添加

ssl 相关配置.

注: 需要注意标有注释的内容.

server {
 # 将端口号改为 443 并启用 ssl
 listen 443 ssl;
 # 访问域名，多个域名以空格分开

2. 添加新端口为https

如果想同时允许 http 和 https 两种访问方式时, 需要额外添加一套平台配置. 步骤如下:

将 80 端口的 Server 配置复制一份

按前面的 步骤 修改新复制的 Server .

 server_name localhost;

 # 证书相关配置, 具体路径为实际挂载到容器中的路径
 ssl_certificate /usr/local/nginx/cert/<文件名>.pem; # pem文件的路径
 ssl_certificate_key /usr/local/nginx/cert/<文件名>.key; # key文件的路径

 # ssl验证相关配置
 ssl_session_timeout 5m; #缓存有效期
 ssl_ciphers ECDHE-RSA-AES128-GCM-
SHA256:ECDHE:ECDH:AES:HIGH:!NULL:!aNULL:!MD5:!ADH:!RC4; #加密算法
 ssl_protocols TLSv1 TLSv1.1 TLSv1.2; #安全链接可选的加密协议
 ssl_prefer_server_ciphers on; #使用服务器端的首选算法

 # 其余配置保持不变即可
}

原有的配置
server {
 listen 80;
 server_name localhost;
 keepalive_timeout 180;
 client_header_timeout 180;
 send_timeout 180;
 client_body_timeout 180;
 client_max_body_size 300000M;
 proxy_connect_timeout 3600s;
 proxy_send_timeout 3600s;
 proxy_read_timeout 3600s;
 client_header_buffer_size 512k;
 large_client_header_buffers 4 512k;
 charset utf-8;

 # 其它内容
}

新复制并修改后的配置
server {
 # 将端口号改为 443 并启用 ssl
 listen 443 ssl;
 # 访问域名，多个域名以空格分开

3. 挂载证书文件并修改相关端口

修改 docker-compose.yml 文件, 作如下修改:

1. 将证书挂载到 web 容器中.

2. 修改映射端口.

 server_name localhost;

 # 证书相关配置, 具体路径为实际挂载到容器中的路径
 ssl_certificate /usr/local/nginx/cert/<文件名>.pem; # pem文件的路径
 ssl_certificate_key /usr/local/nginx/cert/<文件名>.key; # key文件的路径

 # ssl验证相关配置
 ssl_session_timeout 5m; #缓存有效期
 ssl_ciphers ECDHE-RSA-AES128-GCM-
SHA256:ECDHE:ECDH:AES:HIGH:!NULL:!aNULL:!MD5:!ADH:!RC4; #加密算法
 ssl_protocols TLSv1 TLSv1.1 TLSv1.2; #安全链接可选的加密协议
 ssl_prefer_server_ciphers on; #使用服务器端的首选算法

 # 其余配置保持不变即可
}

web:
 container_name: web
 image: nginx:alpine
 logging:
 driver: json-file
 options:
 max-file: "1"
 max-size: 100m
 networks:
 - backend
 - operation
 ports:
 # 原访问端口, http 协议
 - 3030:80
 # 新增端口, https 协议. 例如想修改外部访问端口为 8443 时, 可修改为 8443:443
 - 443:443
 restart: always
 ulimits:
 nofile:
 hard: 3072
 soft: 1024
 nproc: 4096
 volumes:
 - /etc/localtime:/etc/localtime:ro

4. 重启相关服务

进入到平台安装目录下(即 docker-compose.yml 文件所在目录), 执行以下命令重启相关服务, 重启成功后上述

修改后效.

5. 检查是否修改成功

执行完上述重启命令后, 使用以下命令确认 web 是否正常启动

如果 web 的状态为停止状态, 表示配置有误, 可通过以下命令查看日志, 并根据日志内容作相关的调整.

如果 web 正常启动后, 即可通过 https 访问平台

 - /opt/app/airiot/web/html:/usr/share/nginx/html
 # 添加该行内容, 将存放证书的目录挂载到容器中. 需要保证这里挂载到容器内的路径与前面 nginx.conf 文
件中的证书路径保持一致.
 # 格式为: 本地存放证书的目录:/usr/local/nginx/cert/
 - /opt/app/airiot/web/ssl/:/usr/local/nginx/cert/
 - /opt/app/airiot/web/nginx.conf:/etc/nginx/nginx.conf
 - /opt/app/airiot/web/webCfg:/etc/nginx/webCfg
 - /opt/app/airiot/web/portal:/usr/share/nginx/portal

docker-compose up -d

docker ps -a | grep web

docker logs web

流程日志输出与流程变量绑定关系查找
流程输出的值和格式都可以在流程日志里面看到，选择绑定一个字段后，也可以在流程日志里面看到。两者可

以对应。

1.点击日志

2.查看配置好流程后触发的一条流程日志

3.之后会出来两个接口，上面的里面是流程配置，下面的是流程本次执行的输出数据

4.publishFlow里是配置的所有流程处理节点，找到绑定了字段的那个流程节点， {{}} 包起来的就是绑定字

段，然后例如图中，按Flow_0F5A03E4.select-27B5 这个路径去流程输出数据接口里面去找对应的值

5.去最上面的那个里面找

6.Flow_0F5A03E4.select-27B5 值对应的就是那个绑定字段的值

跨域配置
跨域可以通过配置nginx的方案解决，配置后通过 http://ip:3030/rest 访问。

跨域配置

在 Nginx 中配置跨域资源共享（CORS，Cross-Origin Resource Sharing）允许不同来源的客户端访问你的

资源。通过正确配置 HTTP 响应头，Nginx 可以让浏览器允许跨域请求。以下是配置跨域的几种常见方案：

nginx.conf 文件所在位置: app/airiot/web/nginx.conf 。

跨域配置，在一些环境实践，可以只配置 OPTIONS 部分：

1. 单项目版本参考

可以在 nginx.conf 中添加如下配置：

add_header 'Access-Control-Allow-Origin' '*' always;
add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE' always;
add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
add_header 'Access-Control-Allow-Credentials' 'true' always;

if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
}

user nginx;
worker_processes auto;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;

events {
 worker_connections 100000;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

 access_log /var/log/nginx/access.log main;

 sendfile on;
 #tcp_nopush on;

 keepalive_timeout 65;
 gzip on;
 gzip_min_length 1k;
 gzip_buffers 4 16k;
 gzip_comp_level 8;
 gzip_types text/plain application/javascript application/x-javascript text/css
application/xml text/javascript application/x-httpd-php image/jpeg image/gif image/png;
 gzip_vary off;
 gzip_disable "MSIE [1-6]\.";

 fastcgi_intercept_errors on;
 proxy_intercept_errors on;
 server_tokens off;
 server {
 listen 80;
 server_name localhost;

 keepalive_timeout 180;
 client_header_timeout 180;
 client_body_timeout 180;
 client_max_body_size 10240M;
 client_header_buffer_size 512k;
 large_client_header_buffers 4 512k;
 charset utf-8;

 error_page 404 /404.html;

 location /404.html {
 root /usr/share/nginx/html;
 try_files $uri /404.html;
 }

 location /404 {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;

 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }
 proxy_pass http://traefik:80/front/404;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Real-Port $remote_port;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 location /rest/front {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }

 proxy_pass http://traefik:80/front;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Real-Port $remote_port;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 location ^~ /rest/static {
 alias /usr/share/nginx/html/static/;
 }

 location /rest/ {
 set $http_method $request_method;
 if ($http_x_request_http_method = "DELETE") {
 set $http_method $http_x_request_http_method;
 }
 if ($http_x_request_http_method = "PUT") {
 set $http_method $http_x_request_http_method;

 }
 if ($http_x_request_http_method = "PATCH") {
 set $http_method $http_x_request_http_method;
 }

 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }

 add_header X-Content-Type-Options nosniff;
 add_header X-XSS-Protection 1;
 add_header Content-Security-Policy "default-src 'self'; style-src * 'unsafe-
inline'; img-src * data:; object-src 'self'; script-src * 'unsafe-eval' 'unsafe-inline';
font-src * data:; worker-src * blob:;";
 add_header Referrer-Policy value;
 add_header X-Permitted-Cross-Domain-Policies value;
 add_header X-Download-Options value;
 add_header X-Frame-Options SAMEORIGIN;
 add_header Strict-Transport-Security value;
 proxy_method $http_method;
 proxy_pass http://traefik:80/;
 proxy_read_timeout 300;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Real-Port $remote_port;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 error_page 404 /404;
 }

 location /ws {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';

 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }
 proxy_pass http://traefik:80/core/ws;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }

 location / {
 root /usr/share/nginx/html;
 index index.html index.htm;
 #try_files $uri /index.html;
 try_files $uri /rest/front/static/index;
 }

 location /admin {
 root /usr/share/nginx/html;
 index index.html index.htm;
 #try_files $uri /index.html;
 try_files $uri /rest/front/static/admin;
 }

 location ~ /ISAPI|SDK/ {
 if ($http_cookie ~ "webVideoCtrlProxy=(.+)") {
 proxy_pass http://$cookie_webVideoCtrlProxy;
 break;
 }
 }

 location ^~ /webSocketVideoCtrlProxy {
 #web socket
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Host $host;

 if ($http_cookie ~ "webVideoCtrlProxyWs=(.+)") {
 proxy_pass
http://$cookie_webVideoCtrlProxyWs/$cookie_webVideoCtrlProxyWsChannel?$args;
 break;
 }
 if ($http_cookie ~ "webVideoCtrlProxyWss=(.+)") {
 proxy_pass
http://$cookie_webVideoCtrlProxyWss/$cookie_webVideoCtrlProxyWsChannel?$args;
 break;
 }
 }

 location /video/ {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }

 proxy_pass http://traefik:80/;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 error_page 404 /404;
 }

 location /ws/lsp/ {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }
 proxy_pass http://traefik:80/;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 error_page 404 /404;
 }

 }
}

2. 空间版本参考

可以在 nginx.conf 中添加如下配置：

user nginx;
worker_processes auto;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;

events {
 worker_connections 100000;
}
http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr - $proxy_add_x_forwarded_for- $remote_user [$time_local]
"$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

 access_log /var/log/nginx/access.log main;

 sendfile on;
 #tcp_nopush on;

 keepalive_timeout 65;
 gzip on;
 gzip_min_length 1k;
 gzip_buffers 4 16k;
 gzip_comp_level 8;
 gzip_types text/plain application/javascript application/x-javascript text/css
application/xml text/javascript application/x-httpd-php image/jpeg image/gif image/png;
 gzip_vary off;
 gzip_disable "MSIE [1-6]\.";

 fastcgi_intercept_errors on;
 proxy_intercept_errors on;
 server_tokens off;
 server {
 listen 80;
 server_name localhost;
 keepalive_timeout 180;
 client_header_timeout 180;
 client_body_timeout 180;
 client_max_body_size 10240M;
 client_header_buffer_size 512k;
 large_client_header_buffers 4 512k;

 charset utf-8;

 error_page 404 /404.html;

 location /404.html {
 root /usr/share/nginx/html;
 try_files $uri /404.html;
 }

 location /404 {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }
 proxy_pass http://traefik:80/front/404;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Real-Port $remote_port;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 location /portal/ {
 alias /usr/share/nginx/portal/;
 index index.html index.htm;
 try_files $uri /index.html;
 }

 location /rest/front {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;

 }
 proxy_pass http://traefik:80/front;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Real-Port $remote_port;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
 location ^~ /rest/static {
 alias /usr/share/nginx/html/static/;
 }
 location /portal/rest/ {
 set $http_method $request_method;
 if ($http_x_request_http_method = "DELETE") {
 set $http_method $http_x_request_http_method;
 }
 if ($http_x_request_http_method = "PUT") {
 set $http_method $http_x_request_http_method;
 }
 if ($http_x_request_http_method = "PATCH") {
 set $http_method $http_x_request_http_method;
 }

 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }
 add_header X-Content-Type-Options nosniff;
 add_header X-XSS-Protection 1;
 add_header Content-Security-Policy "default-src 'self'; style-src * 'unsafe-
inline'; img-src * data:; object-src 'self'; script-src * 'unsafe-eval' 'unsafe-inline';
font-src * data:; worker-src * blob:;";
 add_header Referrer-Policy value;
 add_header X-Permitted-Cross-Domain-Policies value;
 add_header X-Download-Options value;
 add_header X-Frame-Options SAMEORIGIN;
 add_header Strict-Transport-Security value;
 proxy_method $http_method;

 proxy_pass http://traefik:80/;
 proxy_read_timeout 300;
 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Real-Port $remote_port;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 error_page 404 /404;
 }

 location /rest/ {
 set $http_method $request_method;
 if ($http_x_request_http_method = "DELETE") {
 set $http_method $http_x_request_http_method;
 }
 if ($http_x_request_http_method = "PUT") {
 set $http_method $http_x_request_http_method;
 }
 if ($http_x_request_http_method = "PATCH") {
 set $http_method $http_x_request_http_method;
 }
 add_header X-Content-Type-Options nosniff;
 add_header X-XSS-Protection 1;
 add_header Content-Security-Policy "default-src 'self'; style-src * 'unsafe-
inline'; img-src * data:; object-src 'self'; script-src * 'unsafe-eval' 'unsafe-inline';
font-src * data:; worker-src * blob:;";
 add_header Referrer-Policy value;
 add_header X-Permitted-Cross-Domain-Policies value;
 add_header X-Download-Options value;
 add_header X-Frame-Options SAMEORIGIN;
 add_header Strict-Transport-Security value;
 proxy_method $http_method;
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }

 proxy_pass http://traefik:80/;
 proxy_read_timeout 300;
 # proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Real-Port $remote_port;
 # proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header Host $http_host;
 error_page 404 /404;
 }

 location /ws {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }
 proxy_pass http://traefik:80/core/ws;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }

 location = / {
 rewrite ^/(.*) portal/index.html redirect;
 }

 location / {
 root /usr/share/nginx/html;
 index index.html index.htm;
 #try_files $uri /index.html;
 try_files $uri /rest/front/static/index;
 }

 location = /admin {
 return 404;
 }

 location /admin {
 root /usr/share/nginx/html;
 index index.html index.htm;
 #try_files $uri /index.html;
 try_files $uri /rest/front/static/admin;
 }

 location ~ /ISAPI|SDK/ {
 if ($http_cookie ~ "webVideoCtrlProxy=(.+)") {

 proxy_pass http://$cookie_webVideoCtrlProxy;
 break;
 }
 }

 location ^~ /webSocketVideoCtrlProxy {
 #web socket
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Host $host;

 if ($http_cookie ~ "webVideoCtrlProxyWs=(.+)") {
 proxy_pass
http://$cookie_webVideoCtrlProxyWs/$cookie_webVideoCtrlProxyWsChannel?$args;
 break;
 }
 if ($http_cookie ~ "webVideoCtrlProxyWss=(.+)") {
 proxy_pass
http://$cookie_webVideoCtrlProxyWss/$cookie_webVideoCtrlProxyWsChannel?$args;
 break;
 }
 }

 location /video/ {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;
 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }
 proxy_pass http://traefik:80/;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 error_page 404 /404;
 }

 location /ws/lsp/ {
 add_header 'Access-Control-Allow-Origin' '*' always;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE'
always;

通过这些配置，你可以在 Nginx 中灵活地设置跨域访问规则，确保你的应用能够处理不同来源的请求。

 add_header 'Access-Control-Allow-Headers' 'Origin, *' always;
 add_header 'Access-Control-Allow-Credentials' 'true' always;

 if ($request_method = 'OPTIONS') {
 # 添加 CORS 头，确保只设置一次
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS, PUT, DELETE';
 add_header 'Access-Control-Allow-Headers' 'Origin, *';
 add_header 'Access-Control-Allow-Credentials' 'true';
 return 204;
 }
 proxy_pass http://traefik:80/;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 error_page 404 /404;
 }
 }
 include ./webCfg/*.conf;
}

关于AIRIOT3.0升级到4.0的说明
感谢您使用AIRIOT平台！AIRIOT 3.0现已升级至AIRIOT 4.0版本。本次升级带来了多项重要改进和新功能，

以提升您的使用体验和平台性能。现在对升级步骤进行说明，按此说明即可升级到4.0版本中。

升级步骤

步骤一：下载4.0安装包

访问AIRIOT官方网站或授权渠道，进入4.0版本下载专区，找到AIRIOT 4.0升级包。

下载安装包到您的服务器或本地计算机并进行安装。

步骤二：4.0平台中安装 @airiot/v3patch模块

由于3.0版本中的部分组件在4.0版本中已优化了代码结构，直接升级可能导致这些组件无法显示。为确保这些

组件在4.0版本平台上正常显示，需要安装@airiot/v3patch。

1. 获取@airiot/v3patch

可复制链接到浏览器中下载@airiot/v3patch，链接：

https://d.airiot.link/front/@airiot/v3patch/@airiot_v3patch-1.0.1.tgz。

https://d.airiot.link/front/@airiot/v3patch/@airiot_v3patch-1.0.1.tgz%E3%80%82

2. 安装@airiot/v3patch

进入运维管理平台，在模块管理中，离线上传下载的@airiot/v3patch文件。

步骤三：3.0平台中安装dashboard-upgrade、migration服务

由于3.0版本中的部分组件在4.0版本中已优化了代码结构，直接升级可能导致这些组件无法显示。为确保这些

组件在4.0版本平台上正常显示，需要安装dashboard-upgrade、migration服务。

1. 获取dashboard-upgrade、migration服务

可进入官网下载dashboard-upgrade、migration，链接：

https://www.airiot.tech/repos/dashboard-upgrade/v3/releases 。

2. 安装dashboard-upgrade、migration服务

进入运维管理平台，在服务管理中，离线上传下载的dashboard-upgrade、migration文件。

步骤四：到3.0平台中下载版本升级文件

1. 路径：系统管理>版本升级。

2. 填写以下信息：

项目ID:填写当前项目ID。

IP:填写当前项目的IP地址或域名（注意:不填写http://）。

端口：项目的mongo数据库端口，一般为27017。

用户名：填写项目的mongo数据库端口。

https://www.airiot.tech/repos/dashboard-upgrade/v3/releases

密码：填写项目的mongo数据库密码。

3. 填写后点击下载，将当前项目版本升级文件打包下载到本地。

步骤五：到4.0平台中上传备份文件并还原

1. 路径:通用功能>备份管理

2. 将3.0版本升级文件上传到4.0平台中，操作详见备份管理中上传备份说明；

3. 将上传的备份文件进行还原，还原操作详见备份管理中还原说明。

4. 还原成功后，即完成将3.0项目升级到4.0项目数据库文件升级。

步骤六：迁移媒体库文件

由于3.0到4.0升级无法统一迁移媒体库文件，需单独处理，具体方式如下（二选其一即可）：

1. 方式一：从3.0平台下载媒体文件，并上传到4.0平台，需保持相同目录结构。

2. 方式二：需进行目录复制，操作如下：

linux： airiot/fileServer 下 项目 id 和 mediaLibrary 下 项目 id 拷贝到 4.0 下 airiot/fileServer

对应的新的项目 id 下和 mediaLibrary 下 新项目 id 下。

windows： core/fileServer 下 项目 id 和 mediaLibrary 下 项目 id 拷贝到 4.0 下 airiot/fileServer

对应的新的项目 id 下和 mediaLibrary 下 新项目 id 下。

历史数据升级步骤

https://docs.airiot.link/user-manual/%E9%80%9A%E7%94%A8%E5%8A%9F%E8%83%BD/%E5%A4%87%E4%BB%BD%E7%AE%A1%E7%90%86
https://docs.airiot.link/user-manual/%E9%80%9A%E7%94%A8%E5%8A%9F%E8%83%BD/%E5%A4%87%E4%BB%BD%E7%AE%A1%E7%90%86

1. 进入etcd http://ip:58080/etcdkeeper/ 输入用户名、密码;

2. 修改 /airiot/config/pro.json 配置,将 Sharding 由 true 改为 false;

3. 重启 core 和 storage 服务。

技术支持

如果您在升级过程中遇到任何问题，或需要任何技术支持，请随时联系我们的客户服务团队。我们将竭诚为您

提供帮助。

